2008 Research Grants

Over $3 million awarded for research grants since 2000!

The National MPS Society has awarded $499,000 for research grants in 2008. The funding that the Society provides has been and continues to be crucial as we move forward with our mission to find the cures.

Drs. Bigger, Montano, Sands, Serafini, and Steet were awarded the general research grants of $60,000 each. Drs. Brunetti-Pierri and Crawford were each awarded $65,000 for MPS II research, and Dr. Ballabio was awarded the MPS III grant for $60,000. Each grant is for two years, and the researchers will receive half of the total each year.

We received 22 letters of intent from researchers throughout the world for the eight research grants offered in 2008. After reviewing those letters, our Scientific Advisory Board review committee requested full grants proposals from 12 researchers.

This year we collaborated with two foundations to offer an MPS III partnership grant. We did not have enough funds in the MPS III research category to fund a grant, and we are very grateful to the Childrens Medical Research Foundation and Bens Dream Foundation for helping to fund this grant. Opportunities such as this ensure that our research dollars are not dormant for a year as we await additional donations to fund a grant. Its also a wonderful opportunity for the MPS community to join together as we strive to meet our common goal to find the cures.

Money from our research funds supported the expert Newborn Screening meeting held February 1, 2008 and reported in summer 2008 Courage. For the last three years the UK MPS Society has funded the research of Prof. Grzegorz Wegrzyn at the University of Gdansk in Poland, Development of gene expression-targeted isoflavone therapy for MPS III.” The UK requested support this year from our sister organizations in the International MPS Network to fund the extension 4th year. The National MPS Society has funded the requested $4,000 for Prof. Wegrzyns research.

Dr. Nicola Brunetti-Pierri
Baylor College of Medicine, Houston, TX
HDAd gene therapy for lysosomal storage disorders”

Lysosomal storage disorders (LSD) often present with severe neurologic involvement. However, currently available treatments are not effective to treat this significant problem. Both enzyme replacement therapy and gene therapy have failed to show a significant neurologic improvement because the deficient enzyme is transported from the bloodstream to the brain with very low efficiency. To overcome this obstacle, we propose to inject a gene therapy vector directly into the brain fluid (called cerebrospinal fluid or CSF) through a simple and minimally invasive lumbar puncture. By this method, our gene therapy vector will transfer the gene encoding for the deficient lysosomal enzyme to the brain cells lining the CSF spaces. We hypothesize that these cells will secrete the enzyme in the CSF and through the CSF circulation it will diffusely penetrate into the brain to correct the storage disease. The goals of this proposal are to test the efficacy of this approach in mice affected with MPSII and the safety in nonhuman primates (baboons) because large animal models can better predict the outcomes in humans. Therefore, the studies included in this proposal have the potential to generate clinically relevant results which could be applicable for all LSD with neurologic involvement.

Dr. Brett E. Crawford
Zacharon Pharmaceuticals Inc., La Jolla CA,
Glycosaminoglycan inhibitors as substrate reduction therapies for MPS II”

Mucopolysaccharidosis (MPS) is a collection of genetic disorders caused by mutations in genes encoding enzymes required to degrade carbohydrate structures known as glycosaminoglycans (GAGs). The impaired degradation caused by these mutations leads to accumulation of GAGs within cells which in turn leads to serious multi-system disease. Iduronate sulfatase is a critical component of the GAG degradation
system, this enzyme is responsible for removing the 2-O-sulfate residues in GAGs that are being degraded. In MPS II patients, the impaired function of the iduronate sulfatase leads to the accumulation of GAG fragments with 2-O-sulfate groups which cannot be degraded. We have discovered compounds that inhibit GAG 2-O-sulfation. These compounds are potentially the starting point for a novel substrate reduction therapy for MPS II. Because these compounds can reduce the amount of 2-O-sulfated GAGs made by cells, it is possible that they could reduce GAG accumulation due to an impaired iduronate sulfatase. In this application, we propose to test these compounds in MPS II models to determine if inhibiting GAG synthesis can reduce GAG accumulation and alleviate symptoms of the disease.

Dr. Andrea Ballabio
TIGEM (Telethon Institute of Genetics & Medicine), Naples, Italy
Modulation of autophagy as a potential therapeutic approach for MPS”

Autophagy is a lysosome-mediated degradation pathway in which large portion of citosol are sequestered in specific vesicles (autophagosomes) and then degraded upon fusion with lysosomes. We demonstrated in two different mouse models of mucoplysaccharisodis, the Multiple Sulfatase Deficiency (MSD) and mucopolysaccharidosis type-IIIA (MPS-IIIA), an impairment of autophagy caused by inefficient fusion between autophagosomes and lysosomes. This results in an abnormal accumulation of different toxic substrates that ultimately lead to cell damage and death. Our results are supported by independent studies demonstrating that a dysfunction of autophagy also occurs in other forms of lysosomal storage diseases. The goal of this project is to exploit novel therapeutic strategies to treat MPS pathology based on the prevention/removal of the toxic substrates that accumulate as a consequence of inefficient autophagic degradation. This will be achieved using both pharmacological and genetic approaches. Our results will be instrumental to develop new therapeutic strategies in human patients.

Dr. Brian Bigger
Royal Manchester Children’s Hospital, Manchester, UK
The effect of heparan sulphate on stem cell homing and engraftment in MPS I”

MPS I Hurler is a fatal genetic disease caused by the lack of a specific enzyme which helps to break down large sugars called glycosaminoglycans (GAGs) in the body. The only treatment is stem cell transplantation, where cells from healthy donors replace patients own bone marrow and produce the missing enzyme. Only around half (56%) of these transplants are successful first time; often a second or third transplant is needed and this can be more risky. In Hurler patients, two types of GAG, heparan sulphate and dermatan sulphate, cannot be broken down, and instead they accumulate inside as well as on the outside of cells. Heparan sulphate helps cells in the body to signal to each other, and is needed by stem cells to home to the bone marrow following transplantation. It is also one of the components of extracellular matrix (ECM); the material that fills the spaces between cells. We have shown that normal cells from a stem cell transplant home differently across ECM from MPS I mice and want to identify if this or other factors cause stem cell transplants to fail. This will help us develop safer transplants for patients with MPS I Hurler.

Dr. Adriana M Montano
Saint Louis University School of Medicine, St Louis, MO
Identification of genes for keratin sulfate biosynthesis: toward development of RNAi mediated therapy”

The main goal of this research is to establish a novel therapeutic system for MPS IVA (Morquio A) by reducing the synthesis of the accumulated substrate (keratan sulfate) in the skeletal tissue to improve the bone lesions. In this proposal, we will test a new approach by partially blocking the synthesis of skeletal keratan sulfate mainly produced in cartilage cells of Morquio A patients. First, two candidate genes responsible for the synthesis of skeletal keratin sulfate will be characterized functionally. Afterwards the enzyme(s) responsible for the synthesis of skeletal keratin sulfate will be attenuated by a recently developed RNA interference method. The targeted gene is suppressed at the RNA level. Our modified RNA interference system will be unique and novel since the therapeutic agent is targeted to the major bone matrix, hydroxyapatite, by attaching a short acidic peptide to the agent. The attenuation of synthesis of the enzyme(s) will be tested initially in vitro in cartilage cells of MPS IVA patients. Successive preclinical trial on animal model(s) will provide critical information leading to human clinical trials. This new approach could be applicable to all types of MPS which store different types of glycosaminoglycans and suffer from bone lesions.

Dr. Mark S. Sands
Washington University School of Medicine, St. Louis, MO
Metabolic adaptations and phenotypic consequences of blocking lysosomal recycling”

Lysosomal storage diseases (LSDs) are caused by a deficiency of enzymes responsible for recycling material in cells. This recycling serves an important purpose by saving the cell energy. In LSDs recycling is interrupted and storage material builds up in lysosomes, likely contributing to disease. The amount of energy saved by a normal cell by lysosomal recycling is equivalent to the amount of inaccessible energy (storage material) in the lysosome of an affected cell. This can be an enormous amount of energy over the life of a cell. Since lysosomal recycling is blocked in LSDs, an affected cell has to expend more energy to carry out its normal functions in order to make up for the inaccessible energy stored in the lysosome. In an organism, this will result in a deficiency in fat stores. We previously documented this effect in five different mouse models of lysosomal storage disease. We are currently conducting experiments in mice to ascertain what adaptations the affected cells are making to the lack of recycling and how this contributes to the symptoms and progression of the disease. The knowledge gained from these studies will be used to design and test the effectiveness of dietary interventions.

Dr. Marta Serafini and Dr. Ettore Biagi
Dulbecco Telethon Institute at M.Tettamanti Research Center Clinica Pediatrica Univ., Monza, Italy
Marrow mesenchymal stem cell therapy for MPS I”

Affecting one in 100,000 children, Hurler syndrome is a rare genetic disorder where the IDUA enzyme, which normally breaks down the mucopolysaccharides dermatan and heparan sulphate, is missing. These mucopolysaccharides build up in all tissues in the body causing progressive deterioration and abnormal function of multiple organs. Hematopoietic cell transplantation (HCT) is one of the most promising treatments available that retards the progression of the disease. The clinical success of HCT as therapeutic approach for MPS I is compromised by the high frequency of graft rejection, incomplete donor chimerism and by inefficiency to prevent and correct skeletal abnormalities associated with the disease. This proposal aims at investigating if the use of supplemental stem cell therapy can improve the efficiency of HCT. Our research interest is focussed on a population of stem cells called mesenchymal stem cells (MSC), which can significantly contribute to regenerate tissues of the mesenchymal lineages, as stroma, bones and cartilage. We want to determine if MSC isolated from healthy donors may facilitate hematopoietic repopulation and skeletal tissues repair in a NOD/SCID/MPS-I mouse model. This initial experience will serve to ascertain if our hypothesis is robust and meet all the criteria to transfer this therapeutic strategy into clinical intervention.

Dr. Richard Steet
University of Georgia Research Foundation, Athens, GA
Investigation of the cartilage pathogenesis of ML II and MPS”

While many tissues throughout the body are affected in individuals with MPS and MPS-related disorders, the central pathology in these patients is observed in bone and joints. Impaired development and progressive destruction of cartilage leads to many debilitating symptoms for MPS patients. The series of molecular events that lead from the primary genetic defect of MPS disorders to the characteristic bone and cartilage pathologies remains poorly understood. Defining these molecular events is important since it will point to new ways to treat these diseases without having to replace the defective enzymes or genes. Our laboratory has been using the zebrafish model system to study the cartilage defects associated with the MPS-related disorder, mucolipidosis II (ML-II). Our current evidence suggests that these cartilage defects are accompanied by changes in the expression level of several types of proteases, enzymes that can degrade extracellular proteins and cause damage to cartilage. We are planning to use zebrafish models of selected MPS and MPS-related disorders to directly test the role of these proteases.

These studies will provide new insight into the disease process of MPS disorders and will serve to identify new targets for therapy.